4,268 research outputs found

    Rational Hadamard products via Quantum Diagonal Operators

    Full text link
    We use the remark that, through Bargmann-Fock representation, diagonal operators of the Heisenberg-Weyl algebra are scalars for the Hadamard product to give some properties (like the stability of periodic fonctions) of the Hadamard product by a rational fraction. In particular, we provide through this way explicit formulas for the multiplication table of the Hadamard product in the algebra of rational functions in \C[[z]]

    Electron Confinement, Orbital Ordering, and Orbital Moments in d0d^0-d1d^1 Oxide Heterostructures

    Full text link
    The (SrTiO3_3)m_m/(SrVO3_3)n_n d0−d1d^0-d^1 multilayer system is studied with first principles methods through the observed insulator-to-metal transition with increasing thickness of the SrVO3_3 layer. When correlation effects with reasonable magnitude are included, crystal field splittings from the structural relaxations together with spin-orbit coupling (SOC) determines the behavior of the electronic and magnetic structures. These confined slabs of SrVO3_3 prefer QorbQ_{orb}=(π,π\pi,\pi) orbital ordering of ℓz=0\ell_z = 0 and ℓz=−1\ell_z = -1 (jz=−1/2j_z=-1/2) orbitals within the plane, accompanied by QspinQ_{spin}=(0,0) spin order (ferromagnetic alignment). The result is a SOC-driven ferromagnetic Mott insulator. The orbital moment of 0.75 μB\mu_B strongly compensates the spin moment on the ℓz=−1\ell_z = -1 sublattice. The insulator-metal transition for n=1→5n = 1 \to 5 (occurring between nn=4 and nn=5) is reproduced. Unlike in the isoelectronic d0−d1d^0-d^1 TiO2_2/VO2_2 (rutile structure) system and in spite of some similarities in orbital ordering, no semi-Dirac point [{\it Phys. Rev. Lett.} {\bf 102}, 166803 (2009)] is encountered, but the insulator-to-metal transition occurs through a different type of unusual phase. For n=5 this system is very near (or at) a unique semimetallic state in which the Fermi energy is topologically determined and the Fermi surface consists of identical electron and hole Fermi circles centered at kk=0. The dispersion consists of what can be regarded as a continuum of radially-directed Dirac points, forming a "Dirac circle".Comment: 9 pages, 8 figure

    First principles investigation of the electronic structure of La2MnNiO6: A room-temperature insulating ferromagnet

    Full text link
    Using first principles calculations within DFT based on the full potential APW+lo method, we calculated the electronic and magnetic structures for the ferromagnetic and antiferromagnetic states of La2MnNiO6 and analyzed the site projected density of states and electronic band structures. Our calculations show that the ground state of La2MnNiO6 is ferromagnetic insulating with the magnetization in agreement with Hund's first rule and experimental findings.Comment: 10 pages, 3 figure

    Statistics on Graphs, Exponential Formula and Combinatorial Physics

    Full text link
    The concern of this paper is a famous combinatorial formula known under the name "exponential formula". It occurs quite naturally in many contexts (physics, mathematics, computer science). Roughly speaking, it expresses that the exponential generating function of a whole structure is equal to the exponential of those of connected substructures. Keeping this descriptive statement as a guideline, we develop a general framework to handle many different situations in which the exponential formula can be applied

    Reversible strain effect on the magnetization of LaCoO3 films

    Full text link
    The magnetization of ferromagnetic LaCoO3 films grown epitaxially on piezoelectric substrates has been found to systematically decrease with the reduction of tensile strain. The magnetization change induced by the reversible strain variation reveals an increase of the Co magnetic moment with tensile strain. The biaxial strain dependence of the Curie temperature is estimated to be below 4K/% in the as-grown tensile strain state of our films. This is in agreement with results from statically strained films on various substrates

    t-J model of coupled Cu2_2O5_5 ladders in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41}

    Full text link
    Starting from the proper charge transfer model for Cu2_2O5_5 coupled ladders in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41} we derive the low energy Hamiltonian for this system. It occurs that the widely used ladder t-J model is not sufficient and has to be supplemented by the Coulomb repulsion term between holes in the neighboring ladders. Furthermore, we show how a simple mean-field solution of the derived t-J model may explain the onset of the charge density wave with the odd period in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41}.Comment: 8 pages, 4 figures, 2 table

    Exchange parameters from approximate self-interaction correction scheme

    Full text link
    The approximate atomic self-interaction corrections (ASIC) method to density functional theory is put to the test by calculating the exchange interaction for a number of prototypical materials, critical to local exchange and correlation functionals. ASIC total energy calculations are mapped onto an Heisenberg pair-wise interaction and the exchange constants J are compared to those obtained with other methods. In general the ASIC scheme drastically improves the bandstructure, which for almost all the cases investigated resemble closely available photo-emission data. In contrast the results for the exchange parameters are less satisfactory. Although ASIC performs reasonably well for systems where the magnetism originates from half-filled bands, it suffers from similar problems than those of LDA for other situations. In particular the exchange constants are still overestimated. This reflects a subtle interplay between exchange and correlation energy, not captured by the ASIC.Comment: 10 page

    First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite

    Full text link
    We present a first-principles density functional study of the structural, electronic and magnetic properties of the ferroelectric domain walls in multiferroic BiFeO3. We find that domain walls in which the rotations of the oxygen octahedra do not change their phase when the polarization reorients are the most favorable, and of these the 109 degree domain wall centered around the BiO plane has the lowest energy. The 109 degree and 180 degree walls have a significant change in the component of their polarization perpendicular to the wall; the corresponding step in the electrostatic potential is consistent with a recent report of electrical conductivity at the domain walls. Finally, we show that changes in the Fe-O-Fe bond angles at the domain walls cause changes in the canting of the Fe magnetic moments which can enhance the local magnetization at the domain walls.Comment: 9 pages, 20 figure

    High Energy Positrons From Annihilating Dark Matter

    Full text link
    Recent preliminary results from the PAMELA experiment indicate the presence of an excess of cosmic ray positrons above 10 GeV. In this letter, we consider possibility that this signal is the result of dark matter annihilations taking place in the halo of the Milky Way. Rather than focusing on a specific particle physics model, we take a phenomenological approach and consider a variety of masses and two-body annihilation modes, including W+W-, ZZ, b bbar, tau+ tau-, mu+ mu-, and e+e. We also consider a range of diffusion parameters consistent with current cosmic ray data. We find that a significant upturn in the positron fraction above 10 GeV is compatible with a wide range of dark matter annihilation modes, although very large annihilation cross sections and/or boost factors arising from inhomogeneities in the local dark matter distribution are required to produce the observed intensity of the signal. We comment on constraints from gamma rays, synchrotron emission, and cosmic ray antiproton measurements.Comment: 4 pages, 1 figur
    • …
    corecore